Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts.
نویسندگان
چکیده
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps.
منابع مشابه
Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts1[OPEN]
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. Here, overexpression ...
متن کاملTargeting senescence to combat osteoarthritis
developmental stage, and nutritional environment. Kobayashi et al. identified Holliday junction resolvase as a key factor in the dynamism of chloroplast nucleoids in the unicellular green algae Chlamydomonas reinhardtii. The gene encoding the resolvase is ubiquitously conserved among green plants. Disruption or down-regulation of this gene also disturbed chloroplast nucleoid organization and se...
متن کاملHISTORICAL PERSPECTIVE ESSAY Circular Chloroplast Chromosomes: The Grand Illusion
If we could extract, purify, and visualize the intact DNA molecules from chloroplasts, what would those molecules look like? Most would expect to find circular DNA molecules the size of the chloroplast genome. By contrast, however, only a small fraction of the DNA obtained from chloroplasts is found as genome-sized circles. The reasons for this profound discrepancy are the subject of this artic...
متن کاملHISTORICAL PERSPECTIVE ESSAY Circular Chloroplast Chromosomes: The Grand Illusion
If we could extract, purify, and visualize the intact DNA molecules from chloroplasts, what would those molecules look like? Most would expect to find circular DNA molecules the size of the chloroplast genome. By contrast, however, only a small fraction of the DNA obtained from chloroplasts is found as genome-sized circles. The reasons for this profound discrepancy are the subject of this artic...
متن کاملCircular chloroplast chromosomes: the grand illusion.
If we could extract, purify, and visualize the intact DNA molecules from chloroplasts, what would those molecules look like? Most would expect to find circular DNA molecules the size of the chloroplast genome. By contrast, however, only a small fraction of the DNA obtained from chloroplasts is found as genome-sized circles. The reasons for this profound discrepancy are the subject of this artic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 172 4 شماره
صفحات -
تاریخ انتشار 2016